Tradeoff between Stem Hydraulic Efficiency and Mechanical Strength Affects Leaf–Stem Allometry in 28 Ficus Tree Species
نویسندگان
چکیده
Leaf-stem allometry is an important spectrum that linked to biomass allocation and life history strategy in plants, although the determinants and evolutionary significance of leaf-stem allometry remain poorly understood. Leaf and stem architectures - including stem area/mass, petiole area/mass, lamina area/mass, leaf number, specific leaf area (LA), and mass-based leafing intensity (LI) - were measured on the current-year branches for 28 Ficus species growing in a common garden in SW China. The leaf anatomical traits, stem wood density (WD), and stem anatomical and mechanical properties of these species were also measured. We analyzed leaf-stem allometric relationships and their associations with stem hydraulic ad mechanical properties using species-level data and phylogenetically independent contrasts. We found isometric relationship between leaf lamina area/mass and stem area/mass, suggesting that the biomass allocation to leaf was independent to stem size. However, allometric relationship between LA/mass and petiole mass was found, indicating large leaves invest a higher fractional of biomass in petiole than small ones. LI, i.e., leaf numbers per unit of stem mass, was negatively related with leaf and stem size. Species with larger terminal branches tend to have larger vessels and theoretical hydraulic conductivity, but lower WD and mechanical strength. The size of leaf lamina, petiole, and stem was correlated positively with stem theoretical hydraulic conductivity, but negatively with stem WD and mechanical strength. Our results suggest that leaf-stem allometry in Ficus species was shaped by the trade-off between stem hydraulic efficiency and mechanical stability, supporting a functional interpretation of the relationship between leaf and stem dimensions.
منابع مشابه
Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity.
Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs an...
متن کاملStem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.
BACKGROUND AND AIMS The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in droug...
متن کاملTradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), me...
متن کاملMidday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees.
Midday depressions in stomatal conductance (g(s) ) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday g(s) , the coordination between leaf and stem hydraulics and whether regulation of midday g(s) differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigat...
متن کاملChanges in shoot allometry with increasing tree height in a tropical canopy species, Elateriospermum tapos.
Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoot...
متن کامل